Combination of Machine-Learning Algorithms for Fault Prediction in High-Precision Foundries
نویسندگان
چکیده
Foundry is one of the activities that has contributed to evolve the society, however, the manufacturing process is carried out in the same manner as it was many years ago. Therefore, several defects may appear in castings when the production process is already finished. One of the most difficult defect to detect is the microshrinkage: tiny porosities that appear inside the casting. Another important aspect that foundries have to control are the attributes that measure the faculty of the casting to withstand several loads and tensions, also called mechanical properties. Both cases need specialised staff and expensive machines to test the castings and, in the second one, also, destructive inspections that render the casting invalid. The solution is to model the foundry process to apply machine learning techniques to foresee what is the state of the casting before its production. In this paper we extend our previous research and we propose a general method to foresee all the defects via building a meta-classifier combining different methods and without the need for selecting the best algorithm for each defect or available data. Finally, we compare the obtained results showing that the new approach allows us to obtain better results, in terms of accuracy and error rates, for foretelling microshrinkages and the value of mechanical properties.
منابع مشابه
Comparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملAn Intelligent Machine Learning-Based Protection of AC Microgrids Using Dynamic Mode Decomposition
An intelligent strategy for the protection of AC microgrids is presented in this paper. This method was halving to an initial signal processing step and a machine learning-based forecasting step. The initial stage investigates currents and voltages with a window-based approach based on the dynamic decomposition method (DDM) and then involves the norms of the signals to the resultant DDM data. T...
متن کاملTransparent Machine Learning Algorithm Offers Useful Prediction Method for Natural Gas Density
Machine-learning algorithms aid predictions for complex systems with multiple influencing variables. However, many neural-network related algorithms behave as black boxes in terms of revealing how the prediction of each data record is performed. This drawback limits their ability to provide detailed insights concerning the workings of the underlying system, or to relate predictions to specific ...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملPrediction of Breast Tumor Malignancy Using Neural Network and Whale Optimization Algorithms (WOA)
Introduction: Breast cancer is the most prevalent cause of cancer mortality among women. Early diagnosis of breast cancer gives patients greater survival time. The present study aims to provide an algorithm for more accurate prediction and more effective decision-making in the treatment of patients with breast cancer. Methods: The present study was applied, descriptive-analytical, based on the ...
متن کامل